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Abstract

The efficient market hypothesis (EMH) plays a fundamental role in modern financial theory.

Previous empirical studies have tested the weak and semi-strong forms of EMH with typical financial

data, such as historical stock prices and annual earnings. However, few tests have been extended to

include alternative data such as tweets. In this study, we use 1) two stock tweet datasets that have

different features and 2) nine natural language processing (NLP)-based deep learning models to test

the semi-strong form EMH in the United States stock market. None of our experimental results

show that stock tweets with NLP-based models can prominently improve the daily stock price

prediction accuracy compared with random guesses. Our experiment provides evidence that the

semi-strong form of EMH holds in the United States stock market on a daily basis when considering

stock tweet information with the NLP-based models.
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1 Introduction

The efficient market hypothesis (EMH), formalized by Fama (1970), states that the financial market

is efficient; that is, security prices at any time reflect all available information. It provides the

theoretical foundation for modern financial economics and implies the unpredictability of financial

asset prices and returns. The EMH is usually tested in three different forms: the weak form, which

only considers the information contained in historical prices; the semi-strong form, which considers

further publicly available information, such as announcements of annual earnings and stock splits;

and the strong form, which also considers private information that has not yet been revealed to the

public.

In an attempt to test the EMH, many empirical studies have utilized typical economic and

financial data, such as historical prices, annual earnings, and monetary policy announcements. With

the development of information technologies, the financial market, like other industries, has also

advanced into the big data era where not only the size but also the type of market-related data have

been widely extended. Among the various types of non-typical market-related data, Twitter1 has

been considered to be a promising information source for decision-making with regards to financial

market investments. This is because Twitter is a channel where financial market participants

can express their opinions about economic and company-wide events, which influence the financial

market. For example, a well-known expert’s opinions may be widely accepted by individual investors

and cause buy/sell actions with an unignorable trading volume, which can therefore change security

prices.

Moreover, a tweet message has abundant attributes, called meta-information. This includes the

number of Twitter followers. Meta-information is also helpful in decision-making in the financial

market. For example, famous financial analysts’ tweets should have a broader impact than those of

ordinary people. Therefore, it is worth investigating whether a group of famous Twitter users can

improve tweet-based stock price predictions. A dataset that focuses on tweets published by famous

and influential Twitter users is desirable.

In addition to the data aspect, recent fast-developing deep learning (DL) technologies provide

potential approaches to exploit information from unstructured data, including tweets. Although

DL is often criticized for its black-box nature compared to most other statistical and econometric

1https://twitter.com/
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approaches, its outstanding prediction capability in many complicated tasks –– such as computer

vision and natural language processing (NLP), is expected to assist decision-making in the financial

market.

In this study, we test the semi-strong form of the EMH in the scenario where tweet

data containing hundreds of thousands of tweet messages and the number of followers of the

corresponding Twitter users, is available for daily stock price prediction. More specifically, we

use two tweet datasets containing entire tweet objects, each of which includes the message content

and the number of followers of the Twitter user (i.e., the author of the tweet message). One of these

datasets is available as a part of StockNet (Xu and Cohen, 2018), and we collected the other, called

BigName, by ourselves. The BigName dataset focuses on tweets authored by famous Twitter users

in the financial market, whereas the StockNet dataset was collected without noting the Twitter

users.

We propose eight DL models with NLP technologies, ranging from relatively old to state-of-the-

art. With another NLP-based DL benchmark model StockNet, we used the nine models in total to

capture the relationship between stock tweets and the closing price movement (either increase or

decrease) of 81 representative stocks in the United States stock market. If any NLP-based DL model

shows a significant improvement in the prediction performance compared with random guesses, we

can say that the model exploits the latent relationship between prices and stock tweets. This is

not accounted for in the market –– suggesting that the market may be inefficient. Otherwise, we

cannot reject that the EMH holds for stock tweets and daily price change predictions in the United

States stock market.

Our experiment shows that there is no large enough improvement in stock prediction accuracy

for any of the models. Consequently, the result supports the notion that the United States stock

market is efficient in terms of the semi-strong form of EMH for the daily basis stock price change

prediction.

Our contributions are threefold:

• We collected the BigName dataset. To the best of our knowledge, this is the first study to

focus on tweets authored by famous Twitter users in the stock market.

• We propose eight DL models for stock price prediction.

• Our experimental results support the semi-strong form EMH.
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2 Related Work

2.1 Efficient Market Hypothesis

The EMH argues that financial asset prices reflect all available information. This is because

investors will perform buy or sell actions immediately after company-related information becomes

publicly available. Therefore, trading actions cause the asset’s price to approach a new equivalent

level within a short time period. Consequently, it is impossible to predict asset returns and

constantly beat the market.

Many researchers and practitioners have supported or challenged the EMH by providing positive

or negative evidence. Early works attempted to find the unpredictability of financial assets, for

example, Ball and Brown (1968); Fama et al. (1969); and other more recent later works additionally

built some return predictors for the financial market –– such as Rosenberg et al. (1985); Campbell

and Shiller (1988); Jegadeesh and Titman (1993). Currently, the EMH has become the fundamental

theoretical hypothesis among academics.

2.2 Stock Price Prediction with DL models

Many DL models for stock price prediction use only numerical data, such as historical prices,

technical indicators, and economic indexes (Atsalakis and Valavanis, 2009; Ballings et al., 2015; Gu

et al., 2020; Henrique et al., 2019).

Meanwhile, with the development of NLP technologies, some studies employed NLP-based

models to further utilize unstructured text data –– such as news and tweets (Ding et al., 2014,

2015, 2016, 2019; Li and Shah, 2017; Duan et al., 2018; Chen et al., 2019b). One of the most

state-of-the-art language models, BERT (Devlin et al., 2018), has demonstrated its capability for

semantic analysis in many general NLP tasks, such as translation and question answering. Previous

stock prediction works also leveraged BERT in their models. Chen et al. (2019a) proposed a BERT-

based hierarchical aggregation model to summarize financial news for foreign exchange movement

prediction. Yang et al. (2019) used BERT for semantics embedding of 30 search terms related to

the financial and economic attitudes revealed by search (Da et al., 2015), known as FEARS. They

then combined the embedding with the search volume indices and price changes and applied a

self-attention layer for the S&P 500 Index return prediction.
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2.3 Stock Price Prediction with Tweets

Some pioneering works employed tweets as an alternative input to the NLP-based model for stock

price prediction. Bar-Haim et al. (2011) proposed a framework to find expert investors according

to their tweet posts and historical stock movement. Then, they used expert investors’ tweets

as the basis for future stock price movement prediction. Si et al. (2013) first implemented a

continuous Dirichlet process mixture model to learn topics from tweets on a daily basis. They

derived the sentiment for each topic according to the opinion word distribution and consequently

built a sentiment time series. They then regressed the stock market index on the sentiment time

series. In addition, Si et al. (2014) proposed the use of a graph to encode relationships among

stocks, where each stock is treated as a node and their relationships are identified as edges based

on the topics. They showed that the graph could improve stock price predictions when regressing

the stock price time series based on the topic-sentiment time series. Xu and Cohen (2018) proposed

a generative model, StockNet, based on the variational autoencoder (Kingma and Welling, 2014).

The StockNet model exploits tweets and historical prices for daily stock price predictions. Liu et al.

(2019) proposed a model based on transformers (Vaswani et al., 2017) and the capsule network.

These are used for extracting semantic features of stock tweets and capturing relationships among

them, for stock price movement prediction.

However, looking back on the previous works on stock price prediction with tweets (Bar-Haim

et al., 2011; Si et al., 2013, 2014; Xu and Cohen, 2018; Liu et al., 2019), none of them answered

the question: Can we treat all tweets by different users equally? Previous studies only considered

the content of tweet messages and ignored Twitter users’ identity or attributes, which can provide

additional signals to the importance of tweet messages.

2.4 Stock Tweet Datasets

Due to Twitter policy, most stock tweet datasets are no longer available, even though they had

been available before. Nevertheless, two stock tweet datasets were still available at the start of our

experiment. One of them, CHRNN, introduced by Wu et al. (2018), includes tweets from January

2017 to November 2017, and is related to 47 companies from Standard & Poor’s 500 candidates.

The other, StockNet, introduced by Xu and Cohen (2018), includes tweets from January 2014

to December 2015, covering 87 companies with the largest market capitalization in 9 sectors in
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the United States stock market.2 The CHRNN dataset contains only tweet messages and their

published times. In contrast, the StockNet dataset consists of the complete tweet objects––that is,

tweet messages and the associated meta-information available from Twitter.

3 Dataset and Task

Our task is to predict the movement of the upcoming daily closing price compared to the previous

business day’s (i.e., increase or decrease) by using stock tweets. In this section, we first show

the concept of a stock tweet and then introduce the process of collecting the BigName dataset,

comparing the characteristics of the BigName and StockNet datasets. Finally, we provide a formal

definition of the task.

3.1 Stock Tweet

With the growing use of social networking services –– such as Twitter and Facebook –– everyone can

broadcast, for example, what they think. Such messages may have a significant impact on financial

circumstances, including stock markets. In this work, we chose Twitter, one of the most popular

social networking services, as our testbed to test the EMH. The following example illustrates a

typical tweet message that mentions the stock market:

Stock Futures Bounce, Now lets Trade This Action! $WMT, $CSCO, $BABA, $CGC

&amp; More In Play... https://t.co/NCLx1t3h8K

Formally, we denote the text in a tweet as a tweet message that may contain several types of

content. A typical tweet message mentioning the stock market includes four types of content:

Theme is the primary and most informative sentence(s) in a tweet message. Stock Futures

Bounce, Now lets Trade This Action! is the theme in the aforementioned tweet example.

Ticker Symbol is a series of letters assigned to a security for the trading purposes. To

discriminate from other components in a tweet message, a ticker symbol is affixed with a

$ mark at the beginning, such as $WMT and $CSCO.

Emoji can give additional cues on the author’s attitude, and it is encoded in Unicode format. A

typical example is given by \u263A, which is a smiling face.

2They included 88 companies in the experiment in total, but one company did not have any tweet data.
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URL provides further relevant information on the tweet message, but not directly through

text, and therefore it is likely to become noise when it is fed into the model.

https://t.co/NCLx1t3h8K is a URL in the above tweet example.

Moreover, a tweet message is enclosed in a tweet object, which also contains many other

attributes associated with the message, for example, the author’s name and number of followers.

We collectively call these attributes meta-information. A brief illustration of a tweet object is

shown in Figure 1.

(Insert Figure 1).

As mentioned before, because the CHRNN dataset only consists of tweet messages and their

published times, meta-information cannot be obtained from it. Although the StockNet dataset

consists of tweet objects, the collected tweets appear to be sampled without being aware of the

author’s identity. However, tweets by users with a smaller number of followers may not have a

significant impact on the market and thus serve as noise for the prediction.

To incorporate the number of followers of Twitter users as an additional signal for the EMH

test (something which is not considered in the StockNet dataset), we created the BigName dataset,

which consists of tweets authored by well-known Twitter users who are supposedly working in the

financial market or related sectors.

3.2 Building the BigName Dataset

We collected tweets using the Twitter API v1.1. We used the following method to create our

BigName dataset:

The first stage of building the BigName dataset involved determining the candidate companies

and identifying a set of well-known financial market-related Twitter accounts. To make a

comparison with as well as to reuse the StockNet dataset, we chose the same list of companies

the StockNet dataset contains as our candidate companies. There are 87 companies in the United

States that have the largest market capitalization in their corresponding sectors. To create a set of

Twitter accounts, we took the Twitter accounts in the StockNet dataset that had no less than 10k

followers into consideration. Then, we added some other famous Twitter accounts at the suggestion
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of online reports by Forbes3 and Marketwatch.4 Consequently, the total number of Twitter accounts

in our set was 1,042.

The second stage used the Twitter Timeline API to collect tweets authored by Twitter accounts

in the set, and to identify the tweets related to our candidate companies. More specifically:

Querying Our query to Twitter Timeline API retrieves tweets by each account in our set.

Filtering We use a regular expression to identify the candidate company-related stock tweets by

ticker symbols.

Repeating We repeat the querying and filtering process a few times within around three months

since the API only allows us to fetch the latest 3,200 tweets at most, from the time of query.

We downloaded the historical daily stock prices of companies on our list from Yahoo! Finance.5

Because the published time of a tweet object and the recorded time of a stock price are originally

in the UTC and EST time zones, respectively, we converted the published time to the EST time

zone.

For each tweet message, we used a regular expression to filter out URL strings, as they can be

hardly comprehensible and thus are likely to become noise in the prediction.

Two consecutive closing prices sometimes remain unchanged; thus, we formulated our task as

a binary classification problem, and we discarded the samples whose prices remained unchanged.

Consequently, 0.58% of the samples in the BigName dataset and 1.03% in the StockNet dataset

were dropped, and the ratios of the increase samples in these datasets became 48.55% and 48.41%

for BigName and StockNet, respectively.

3.3 Dataset Characteristics

Because multiple tweets can be posted on the same day, and since our task is to predict stock

closing price movements on a daily basis, we define a batch of tweets that have the same prediction

target as a sample. A specific example is shown in Figure 2.

(Insert Figure 2).

3https://www.forbes.com/sites/alapshah/2017/11/16/the-100-best-twitter-accounts-for-finance/?sh=dd89b9d7ea0a
4https://www.marketwatch.com/story/finance-twitter-the-50-most-important-people-for-investors-to-follow-2018-12-13
5https://finance.yahoo.com/
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3.3.1 Dataset Scale

Since 6 out of 87 companies’ historical stock prices cannot be completely fetched by Yahoo! Finance,

we excluded them from the BigName dataset.

The size of BigName is 124,357 in terms of the number of tweets; and 32,408 in terms of the

number of samples. Each daily price movement is associated with 3.84 stock tweets on average. In

contrast, the size of the StockNet dataset is 99,919 in terms of the number of tweets, and 18,996 in

terms of the number of samples for the same 81 stocks. Each daily price movement is associated

with 5.26 stock tweet messages on average.

3.3.2 Follower Number Distribution

Figure 3 shows the number of tweets vs. the author’s follower number. It is clear that tweets

in the BigName dataset are mostly published by the accounts whose follower numbers are in the

[10k,100k] range; while tweets in the StockNet dataset are published by the accounts whose follower

numbers are in the [10,10k] range.6

(Insert Figure 3).

Figure 4 shows the number of publishers vs. the publisher’s follower number. We can see that

most publishers’ follower numbers in StockNet range from 0 to 1k, whereas those of BigName range

from 10k to 100k. Moreover, the total publisher number in StockNet is significantly greater than

BigName; that is, StockNet collects tweets from a large group of Twitter users without being aware

of the user’s follower number. In contrast, BigName collects tweets from a small group of Twitter

users who have many followers.

(Insert Figure 4).

3.3.3 Chronological Distribution

The chronological distributions of the tweet objects and task samples are shown in Figure 5. Because

StockNet only collected stock tweets in 2014 and 2015, we plotted them using dots in the figure.

(Insert Figure 5).

6Because the StockNet dataset was collected at an earlier point in time, the publisher’s follower number may have

changed. Thus, accounts in the StockNet dataset have a greater or lesser follower number than the same accounts in

BigName and vice versa.
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3.3.4 Company Distribution

Figure 6 and Figure 7 show the distributions of the number of companies with respect to the number

of tweet objects and samples. From the two figures, it can be noted that very few companies have

many tweets.

(Insert Figure 6 and Figure 7).

3.4 Prediction Task

To test stock price predictability ––that is, the implication of the stock market’s inefficiency

–– our task is formulated on top of StockNet (Xu and Cohen, 2018), and we use the follower

number as an additional input for each tweet message. More specifically, we formulate stock

price movement prediction as a binary classification task, where the output y is whether the

closing price of stock s increases or decreases compared to that of the previous business day (i.e.,

y ∈ {increase, decrease}). The input for this prediction is T = {(ti, ni) | i = 1, . . . , I}, which

is the set of pairs of stock tweet messages ti, with the stock symbol associated with s and the

publisher’s follower number ni, tweeted between the closing time of the last business day and the

closing time of the current day. This is shown in Figure 8, where I is the number of tweet messages

in this period. Given this, our goal is to learn mapping f from T to y; that is,

y = f(T ), (1)

from the dataset collected. Note that the input of StockNet (Xu and Cohen, 2018) contains the set

of tweet messages, {ti | i = 1, . . . , I}, but without ni’s.

(Insert Figure 8).

4 Model

Figure 9 shows our basic pipeline for the stock price prediction task, which consists of word

representation, follower number representation, tweet message representation, and prediction

modules. We prepared several implementations for each module and constructed the models by

combining them all for results comparison. They ranged from old-fashioned to state-of-the-art.

(Insert Figure 9).
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4.1 Word Representation

The input T = {(ti, ni)|i = 1, . . . , I} of our pipeline contains I tweet messages ti, each of which is

a sequence of words. To represent these words for later use, following the convention, we first use a

tokenizer to normalize the word sequence and then compute the word embedding. More specifically,

tweet message ti passes through a tokenizer. The tokenizer converts a word sequence into a sequence

t′i = [ti1, . . . , tiM ], where M is the number of tokens in t′i (M differs for i, but we omit subscript

i for notation simplicity). The m-th token, tim, is then converted into a word representation,

which forms a sequence ei of word representations ––that is, ei = [ei1, . . . , eiM ], where eim ∈ RDe .

Here, we employed two combinations of tokenizer and word embedding, WordPiece+BERT and

NLTK+GloVe+BiGRU, for word representation.

4.1.1 WordPiece+BERT

One of the state-of-the-art word embedding method is BERT (Devlin et al., 2018), which is a

transformer-based approach. Here, we used a popular pre-trained model (bert-base-uncased) by

Hugging Face.7 It has 12 transformer layers, 12 attention heads, and 768-dimensional hidden states

(i.e., De = 768). This pre-trained model uses WordPiece as a tokenizer.

4.1.2 NLTK+GloVe+BiGRU

The relatively old-fashioned method is a combination of the NLTK tokenizer,8 GloVe (Pennington

et al., 2014) for word embedding and BiGRU for contextualization. We first apply the NLTK

TweetTokenizer and then use GloVe and BiGRU layers to obtain the sequence ei of word

representations. The details of our implementation are illustrated in Figure 10.

(Insert Figure 10).

4.2 Follower Number Representation

We represent the follower number in a K-dimensional vector vi, each of which is either 0 or 1 and

corresponds to one of the binary digits of the follower number; i.e., the κ-th element of vi is the

κ-th binary digit of the follower number. The follower number is truncated to 2K −1 if the number

of followers is larger than 2K .

7https://huggingface.co/transformers/index.html
8https://nlp.stanford.edu/projects/glove/
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4.3 Tweet Message Representation

Typically, a classifier (or our prediction module) takes a fixed-length vector as the input. Therefore,

we reduce {ei}i into a single vector. Intuitively, the importance of words differs depending on the

content, and the same applies to tweets in T . We adopt two methods for this reduction: one

method is simply average pooling, computed over word representations and then tweets in T , and

the other method uses hierarchical attention layers.

4.3.1 Average Pooling

Average pooling (AP) is a naive method for reduction, without considering the semantics of words

and tweets. For each sequence ei derived from T , we take the average si within it; that is,

si =
1

M

∑
m

eim. (2)

Then, we concatenate si with follower number representation vi for tweet ti as

hi = [s⊤i ,v
⊤
i ]

⊤. (3)

Finally, the average is computed over T to obtain a collective tweet message representation h′ as

h′ =
1

I

∑
i

hi. (4)

4.3.2 Hierarchical Attention

Because different words in message ti and different messages in T contribute differently to the

prediction, we introduce hierarchical attention layers (HALs) (Yang et al., 2016) to compute h′.

Specifically, for the m-th word representation eim in tweet ti, the word-level attention αim is

given by

uim = tanh(Wweim + bw), (5)

αim =
exp(u⊤

wuim)∑
m′ exp(u⊤

wuim′)
, (6)

where Ww is a trainable matrix, bw and uw are trainable vectors, and uw is in RDw . We can see

uw as a vector to find (or represent) informative words for the prediction. The output si of this

word-level attention layer is a representation of ti, given by

si =
∑
m

αimeim. (7)
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We then apply the tweet-level attention layer because, similar to the word-level attention layer,

different tweets can contribute to the prediction differently. For this level, the follower number is

also considered, because a tweet may have a greater impact on the market and thus the prediction,

if it is authored by a Twitter user whose follower number is large. We concatenate si and vi to

obtain hi in the same manner as Eq. 3. Then, we use a similar attention layer on the word-level as

with the tweet-level attention:

u′
i = tanh(Wshi + bs), (8)

α′
i =

exp(us
⊤u′

i)∑
i exp(u

⊤
s u

′
i)
, (9)

h′ =
∑
i

α′
ihi, (10)

where Ws is a trainable matrix, bs and us are trainable vectors, and u′
i is in RDs .

4.4 Prediction

The representation h′ of T goes through an MLP with two fully connected (FC) layers, and the

activation function between the FC layers is a hyperbolic tangent function. Then, the output of

the MLP is fed into a softmax function to obtain the prediction z ∈ R2; that is,

z = softmax(MLP (h′)). (11)

5 Experimental Settings

5.1 Dataset Splits

We used both the BigName and StockNet datasets for our experiment. We divided the datasets

into training, validation, and test splits based on the time periods, as shown in Table 1. The split

of the StockNet dataset followed Xu and Cohen (2018).

(Insert Table 1).

5.2 Models for Experiment

We list all combinations of modules to be evaluated in Table 2. StockNet at the bottom is the

baseline model presented in Xu and Cohen (2018).
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(Insert Table 2).

5.3 Implementation

For the StockBERT and StockGVBR models, the maximum token size of each tweet message was

limited to 50, with excessive tokens being truncated. Meanwhile, we left the limit as 40 for the

StockNet model following (Xu and Cohen, 2018). The maximum number of tweets in each sample

was set to 30, and the earliest 30 tweets were retained.

The hidden state dimension of BERT is 768 (De = 768), as mentioned previously. The dimension

of the GloVe embedding is 50, which is transformed in the first layer of BiGRU to 100, and we

used this also for its output; therefore, for the BiGRU-based model, De = 100. All variants of our

model used RDw = RDs = 100. The MLP’s hidden state size (i.e., the dimensionality of the first

FC layer’s output) was 16. The follower number representation parameter K was 20.

We used cross entropy as our loss function and Adam as the optimizer. We followed the two-

stage fine-tuning9 method to train the StockBERT variants; the method first freezes the parameters

in BERT and trains the rest of the model with a relatively larger learning rate. The parameters

in BERT are then unfrozen, and the entire model is trained with a relatively small learning rate.

We set five epochs for the first fine-tuning stage and another five epochs for the second fine-tuning

stage. For the StockGVBG and StockNet models, we set the number of training epochs to 10. We

used early stopping for all models. The learning rate was set to 5 × 10−4 and 5 × 10−6 for the

first and the second fine-tuning stages for StockBERT, 5× 10−4 for StockGVBG, and 1× 10−3 for

StockNet. The mini-batch size was set to 8. To evaluate the stability of these models, we trained

them 10 different times and evaluated each trained model with the test split. The performance is

given as the average and standard deviation of the test accuracy scores over 10 repetitions.

6 Results and Discussion

6.1 Results Overview

Table 3 lists the accuracy scores of our models and StockNet. All accuracy scores were

approximately 50%.

9https://www.tensorflow.org/guide/keras/transfer learning
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(Insert Table 3).

Furthermore, we used the Student’s t-test (hereinafter referred to as the t-test) to show the

statistical significance of the performance differences between the models and random guesses. The

null hypothesis is that the mean of the prediction accuracy of the model is equal to that of random

guesses. The t-test was performed in a two-tailed manner, and the results are shown in Table 4.

(Insert Table 4).

The results show that when we use the BigName dataset, three models –– StockBERT HN,

StockGVBG HN, and StockBERT AN –– outperformed random guesses with statistical significance,

but the differences were very small, as shown in Table 3. For the StockNet dataset, none of the

models could beat random guesses.

6.2 Comparative Analysis

Again, we used the t-test to compare the performances between the models that are the same

except for one module.

6.2.1 With vs. Without Follower Numbers

Table 5 lists the t-test results of comparing the performance of the model with and without the

follower numbers. For the cases without the follower numbers, we used hi = si instead of Eq. 3.

The results of, StockBERT HE vs. StockBERT HN and StockGVBG AE vs. StockGVBG AN show

statistically significant differences over the BigName dataset. This was against our expectation: the

models that did not consider follower numbers outperformed the models that considered follower

numbers. This implies that the extra information, that is, follower numbers, did not help or was

even harmful to the prediction. A possible explanation is that (i) the models cannot make full use

of this extra information due to, for example, insufficient training samples, and (ii) the follower

numbers themselves are inherently useless because the regime of financial market can be variable.

(Insert Table 5).

6.2.2 WordPiece+BERT vs. NLTK+GloVe+BiGRU

Table 6 lists p-values between the models with WordPiece+BERT and NLTK+GloVe+BiGRU.

Only the result of StockBERT AN vs. StockGVBG AN show a statistically significant difference,
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but the negative marks (−) suggest that the advanced embedding method does not help improve

the performance as expected.

(Insert Table 6).

6.2.3 Hierarchical Attention vs. Average Pooling

Table 7 lists p-values between the models with AP and HAL. Only the result of StockBERT AN

vs. StockGVBG AN shows statistical significance with a positive mark, which implies that by

introducing HAL, the performance improves compared with AP.

(Insert Table 7).

6.3 Discussion

Stock price prediction in the financial market using DL models is attractive –– however, it has many

pitfalls. Compared to traditional fields where DL models have already achieved great success, the

financial market has its own data property. Therefore, we need to consider model development

similar to many orthodox ML works, and we also need to consider data quality. In this section, we

note our thinking about DL work in the financial market based on our experiments and results.

Many studies, such as ours, apply a methodology that directly uses the DL model and financial

data to predict asset prices. Although some of the works claimed good performance, we still need

to be aware that the hidden structure of the financial market can suddenly change. Thus, a DL

model with millions of parameters can easily fall into an overfitting problem.

In addition to the constantly changing market, the prediction frequency may also heavily

influence model performance. Our problem formulation employs daily basis prediction, and it

hardly outperforms random guess. This result supports the EMH for this prediction frequency

rate. However, we still think that it is interesting to see whether DL models can perform well when

applied to higher frequency prediction or when predicting the instant price change immediately

after new information is released.

7 Conclusion

In this study, we test the EMH with daily stock price prediction using tweet messages, taking

the follower numbers into account. According to our experiment, all variants of our models fail to
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prominently outperform random guesses, and thus we cannot reject that the stock market is efficient

based on our data and method. We will further proceed to increase the prediction frequency rate

so that the prediction can be performed before the fluctuation of the stock price in response to the

release of new information converges.
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{
“id”:  “1161986571907817472”,
“created_at”:  “Thu Aug 15 13:02:42 +0000 2019”,
“text”:  “Stock Futures Bounce, Now ... ”,
“user”:  {

“id”:   “18616722”,
“followers_count”:   “7590”,
…

},
…

}

Figure 1: Tweet object example.

{
“stock_id”: 0,
“stock”: “CSCO”,
“label”:  “-1”
“tweet_from_time”: “2020-05-28 16:30:00 -0400EDT”,
“tweet_to_time”: “2020-05-29 16:30:00 -0400EDT”,
“tweeted_time”: [ “2020-05-28 20:43:11 -0400EDT”, 

“2020-05-29 07:41:56 -0400EDT”, 
…

],
“tweet”: [ “RT @russeltoc: @petenajarian and $CSCO ... ”,

“$CSCO (+0.6% pre) Cisco acquires ... ”,
…

],
“follower”: [ 157647, 53752, …],

}

Figure 2: Sample example.
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Figure 3: Distributions of the number of stock tweet messages with respect to the number of

followers in BigName and StockNet.
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Figure 4: Distributions of the number of Twitter users with respect to the

number of followers in the BigName and StockNet datasets.
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Figure 5: Distributions of the numbers of samples per year in BigName and

StockNet.
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Figure 6: Distributions of the number of stocks with respect to the number of stock tweet messages.
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Figure 7: Distributions of the number of stocks with respect to the number of samples.
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Figure 8: Illustration of our task. Tweet contains tweet message and the optional publisher’s

follower number.
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Figure 9: Illustration of our pipeline.
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Figure 10: Illustration of GloVe+BiGRU.
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Table 1: Dataset splits for BigName and StockNet.

Dataset Training Validation Test

BigName

Start

End

Size

2010-01-01

2020-03-31

26,530

2020-04-01

2020-06-30

2,557

2020-07-01

2020-09-30

2,703

StockNet

Start

End

Size

2014-01-01

2015-07-31

14,737

2015-08-01

2015-09-30

1,624

2015-10-01

2015-12-31

2,440

Notes: Size is measured by the number of task samples.

Table 2: Models used in the experiment.

Model name Tokenizer & word embedding Word/sentence relation Encoded follower number

StockBERT HE WordPiece & BERT HAL With

StockBERT HN WordPiece & BERT HAL Without

StockBERT AE WordPiece & BERT AP With

StockBERT AN WordPiece & BERT AP Without

StockGVBG HE NLTK TweetTokenizer & GloVe+BiGRU HAL With

StockGVBG HN NLTK TweetTokenizer & GloVe+BiGRU HAL Without

StockGVBG AE NLTK TweetTokenizer & GloVe+BiGRU AP With

StockGVBG AN NLTK TweetTokenizer & GloVe+BiGRU AP Without

StockNet NLTK TweetTokenizer & GloVe+BiGRU - Without

Notes: We use the Fundamental StockNet, one of the four StockNet (Xu and Cohen, 2018) variants.

Fundamental StockNet only uses tweet messages as input and can predict the next stock price movement.

The StockNet model has a different model structure and model components.
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Table 3: Average and standard deviation of prediction accuracy.

Model
BigName

dataset

StockNet

dataset

StockBERT HE 50.50% ± 0.70% 49.14% ± 1.98%

StockBERT HN 51.09% ± 0.69% 49.84% ± 1.75%

StockBERT AE 50.17% ± 0.78% 49.21% ± 2.11%

StockBERT AN 50.61% ± 0.43% 49.69% ± 2.06%

StockGVBG HE 50.53% ± 0.74% 50.86% ± 2.77%

StockGVBG HN 50.90% ± 0.33% 49.17% ± 2.48%

StockGVBG AE 50.21% ± 0.65% 50.10% ± 2.57%

StockGVBG AN 51.02% ± 0.57% 51.04% ± 2.49%

StockNet 49.60% ± 0.00% 47.25% ± 0.00%

Random Guess 50.19% ± 1.12% 50.13% ± 0.62%

Notes: Results are based on experiments repeated 10 times.
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Table 4: P -value of t-test for model performance comparison.

Model
BigName

dataset

StockNet

dataset

StockBERT HE 0.4548 0.1308

StockBERT HN 0.0345** 0.6199

StockBERT AE 0.9641 0.1844

StockBERT AN 0.2659 0.5071

StockGVBG HE 0.5000 0.3406

StockGVBG HN 0.0578* 0.2303

StockGVBG AE 0.9651 0.9759

StockGVBG AN 0.0414** 0.2195

StockNet 0.0951* 0.0000***

Notes: The null hypothesis is the mean of the prediction

accuracy of the model is equal to that of random guesses.

The star marks ***, **, and *, represent significance levels

at 0.01, 0.05, and 0.1, respectively.
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Table 5: Results of t-test for model performance comparison.

Model
BigName

dataset

StockNet

dataset

StockBERT HE

vs

StockBERT HN

−

0.0710*

−

0.6168

StockBERT AE

vs

StockBERT AN

−

0.1419

−

0.4120

StockGVBG HE

vs

StockGVBG HN

−

0.1026

+

0.4182

StockGVBG AE

vs

StockGVBG AN

−

0.0081***

−

0.1435

Notes: The null hypothesis is the mean of the prediction

accuracy of the with-follower-number model is equal to

that of the without-follower-number model.

The star marks ***, **, and *, represent significance levels

at 0.01, 0.05, and 0.1, respectively.

The positive mark + means that the with-follower-number

model outperforms the without-follower-number model,

while the negative mark − indicates the opposite.
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Table 6: Results of t-test for model performance comparison.

Model
BigName

dataset

StockNet

dataset

StockBERT HE

vs

StockGVBG HE

−

0.9312

−

0.1041

StockBERT HN

vs

StockGVBG HN

+

0.4409

+

0.4940

StockBERT AE

vs

StockGVBG AE

−

0.9119

−

0.4095

StockBERT AN

vs

StockGVBG AN

−

0.0833*

−

0.2029

Notes: The null hypothesis is the mean of the prediction

accuracy of the WordPiece+BERT leveraged model is

equal to that of the NLTK+GloVe+BiGRU leveraged model.

The star marks ***, **, and *, represent significance levels

at 0.01, 0.05, and 0.1, respectively.

The positive mark + means that the WordPiece+BERT

leveraged model outperforms the NLTK+GloVe+BiGRU

leveraged model, while the negative mark − indicates the

opposite.
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Table 7: Results of t-test for model performance comparison.

Model
BigName

dataset

StockNet

dataset

StockBERT HE

vs

StockBERT AE

+

0.3443

−

0.9381

StockBERT HN

vs

StockBERT AN

+

0.0732*

+

0.8582

StockGVBG HE

vs

StockGVBG AE

+

0.4111

+

0.4913

StockGVBG HN

vs

StockGVBG AN

−

0.5828

−

0.1105

Notes: The null hypothesis is the mean of the prediction

accuracy of the hierarchical attention leveraged model is

equal to that of the average pooling leveraged model.

The star marks ***, **, and *, represent significance levels

at 0.01, 0.05, and 0.1, respectively.

The positive mark + means that the hierarchical attention

leveraged model outperforms the average pooling leveraged

model, while the negative mark − indicates the opposite.
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